Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters










Publication year range
1.
J Oleo Sci ; 73(5): 761-772, 2024.
Article in English | MEDLINE | ID: mdl-38692898

ABSTRACT

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Subject(s)
Insecticides , Oils, Volatile , Plant Leaves , Tribolium , Animals , Insecticides/isolation & purification , Insecticides/analysis , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tribolium/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/analysis , Insect Repellents/analysis , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Temperature
2.
J Vector Borne Dis ; 61(1): 107-116, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648412

ABSTRACT

BACKGROUND OBJECTIVES: Mosquitoes alone transmit diseases to around 700 million individuals annually, killing approximately 0.7 million people every year worldwide. Considering the potential health risks linked with synthetic repellents, it has become vital to identify eco-friendly, natural repellents for mosquito control as well as to understand the underlying mechanism for mosquito repellent activity. To address this, objectives were set to extract essential oils from Citrus macroptera peel and Homalomena aromatica (Spreng.) Schott. rhizomes, evaluate their mosquito repellent activity against Aedes aegypti, and further explore their mosquito odorant receptor inhibition potential. METHODS: The oils were extracted using Clevenger's apparatus, and properties like specific gravity, refractive index, and boiling point were evaluated and characterised using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS). Aedes aegypti mosquito eggs collected from the Indian Council of Medical Research (ICMR), Dibrugarh, were reared in the Department of Pharmaceutical Sciences, Research Laboratory, to obtain adult Aedes aegypti mosquitoes for the mosquito repellent activity evaluation of the essential oils using the Human Bait technique'. Molecular docking studies were performed for the oil components against mosquito odorant binding proteins. Further, toxicity studies of these two oils were evaluated against human dermal fibroblast adult (HDFa) cells. RESULTS: The results revealed the presence of limonene (86.76%) and linalool (52.35%), respectively, in Citrus macroptera and Homalomena aromatica oils. It was found that the combination of the oils in a ratio of 1:1 showed mosquito repellent activity for up to 6.33 ± 0.23 h. Molecular docking studies showed the presence of major oil components having mosquito odorant receptor blocking potential comparable to N, N-diethyl-meta-toluamide (DEET), indicating a rationale for extended mosquito repellent action. Further, both of these oils were found to be non-cytotoxic against HDFa cells after 24 h. INTERPRETATION CONCLUSION: The encouraging mosquito repellent activity of these two oils as compared to synthetic mosquito repellent DEET might pave the way for the development of novel herbal mosquito repellent formulations containing these essential oils.


Subject(s)
Aedes , Citrus , Insect Repellents , Molecular Docking Simulation , Oils, Volatile , Insect Repellents/pharmacology , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Animals , Aedes/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Citrus/chemistry , Humans , Gas Chromatography-Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Female , Rhizome/chemistry
3.
Chem Biodivers ; 21(5): e202400185, 2024 May.
Article in English | MEDLINE | ID: mdl-38513004

ABSTRACT

The resin essential oil (REO) of the Tunisian Araucaria heterophylla trunk bark was investigated for its chemical composition. Then, it was evaluated for its insecticidal and allelopathic activities. The REO was obtained by hydrodistillation for 9 h (yield of 4.2 % w/w). Moreover, fractional hydrodistillation was carried out at 3-hour intervals, resulting in 3 fractions (R1-R3), to facilitate chemical identification and localization of the aforementioned biological activities. GC/MS analysis of the obtained samples allowed the identification of 25 compounds, representing between 91.2 and 96.3 % of their total constituents, which consisted predominantly of sesquiterpene hydrocarbons, oxygenated sesquiterpenes and diterpene hydrocarbons. α-Copaene (10.8 %), γ-muurolene (5.8 %), α-copaen-11-ol (7.8 %), spathulenol (10.5 %), 15-copaenol (8.2 %), ylangenal (10.3 %), dehydrosaussurea lactone (7.7 %), and sandaracopimaradiene (11.4 %) were identified as major compounds. The second part aimed to assess the impact of the A. heterophylla EO and its three fractions for their insecticidal and repellent activity against Tribolium castaneum (Herbst), a stored grain pest, of which a strong repellent activity was noted. In addition, the studied samples showed high phytotoxic effects against Lactuca sativa. The third fraction (R3) performed a total inhibitory potential on seed germination and seedling growth of the target plant. Furthermore, alongside this discovery, an estimation was conducted through molecular docking analysis. Wherein the main compounds of the studied samples were docked into the active pocket of protoporphyrinogen IX oxidase (PDB: 1SEZ), a key enzyme in chlorophyll biosynthesis. Thus, it is recommended to use the REO of A. heterophylla as a natural herbicide.


Subject(s)
Araucaria , Insecticides , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tunisia , Animals , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Araucaria/drug effects , Araucaria/chemistry , Araucaria/metabolism , Insect Repellents/pharmacology , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Resins, Plant/chemistry , Molecular Docking Simulation , Gas Chromatography-Mass Spectrometry
4.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163461

ABSTRACT

Brown planthopper (BPH, Nilaparvata lugens Stal.) is the most damaging rice pest affecting stable rice yields worldwide. Currently, methods for controlling BPH include breeding a BPH-resistant cultivar and using synthetic pesticides. Nevertheless, the continuous cultivation of resistant cultivars allows for the emergence of various resistant races, and the use of synthetic pesticides can induce environmental pollution as well as the emergence of unpredictable new pest species. As plants cannot migrate to other locations on their own to combat various stresses, the production of secondary metabolites allows plants to protect themselves from stress and tolerate their reproduction. Pesticides using natural products are currently being developed to prevent environmental pollution and ecosystem disturbance caused by synthetic pesticides. In this study, after BPH infection in rice, chrysoeriol7 (C7), a secondary metabolite that induces resistance against BPH, was assessed. After C7 treatment and BPH infection, relative expression levels of the flavonoid-related genes were elevated, suggesting that in plants subjected to BPH, compounds related to flavonoids, among the secondary metabolites, play an important role in inducing resistance. The plant-derived natural compound chrysoeriol7 can potentially thus be used to develop environmentally friendly pesticides. The suggested control of BPH can be effectively used to alleviate concerns regarding environmental pollution and to construct a relatively safe rice breeding environment.


Subject(s)
Disease Resistance , Flavones/isolation & purification , Hemiptera/growth & development , Insect Repellents/isolation & purification , Oryza/growth & development , Animals , Biosynthetic Pathways , Flavones/chemistry , Flavones/pharmacology , Gene Expression Regulation, Plant , Green Chemistry Technology , Hemiptera/drug effects , Insect Repellents/chemistry , Insect Repellents/pharmacology , Oryza/chemistry , Oryza/parasitology , Plant Proteins/genetics , Secondary Metabolism
5.
J Ethnopharmacol ; 284: 114755, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34673224

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The paper discusses the traditional ritual, medicinal and insect repellent use of Dysphania schraderiana in Poland, a plant with little ethnobotanical and phytochemical data. Our research suggests that its properties should be further studied comparing it with the related D. botrys and D. ambrosioides. AIM OF THE WORK: D. schraderiana is an aromatic and medicinal annual herb related to D. ambrosioides and D. botrys and practically absent from historical accounts of plant uses in Europe. The aim of this work is to characterise the current use of D. schraderiana in south east Poland on the background of historical Dysphania species use in Europe. MATERIALS AND METHODS: The data on D. schraderiana was collected in 2020, based on interviews with 42 people in rural areas of south-eastern Poland where the species is used today. A range of textual sources were searched including old medicinal herbals, pharmaceutical handbooks, ethnobotanical publications and culinary databases regarding all the uses of Dysphania species in Europe. RESULTS: In the study area D. schraderiana occurs in the whole spectrum of cultivation stages - from being intentionally cultivated to completely wild. The plant is used mainly as an apotropaic and insect repellent, blessed during Catholic church holidays (mainly Assumption Day), and sometimes used as incense in churches (and blessed on Epiphany Day). D. schraderiana rarely occurs in European historical sources, except sometimes classed as a false, inferior form of D. botrys, which has been known for centuries as a moth repellent and treatment for respiratory illness. We hypothesise that the plant was not easily distinguished from D. botrys and their uses strongly overlapped. For some unknown reason the use of D. botrys died out, whereas a relatively large semi-feral population of D. schraderiana exists in south-eastern Poland where it has remained a culturally important plant. CONCLUSIONS: D. schraderiana is a rare case of a non-native plant traditionally used within an area of Europe but previously nearly overlooked in European ethnobotanical literature. Historical uses of Dysphania spp. in other areas of Poland and former Poland (now western Ukraine) suggest that the genus was used more widely in regions beyond the one studied. However, a very compact distribution of use suggests that D. schraderiana may have been brought to SE Poland from a single source outside the study area. Its common name, and use as a holy incense plant, is associated it with the well-known biblical tree resin obtained from Commiphora myrrha (Nees) Engl.


Subject(s)
Amaranthaceae/chemistry , Medicine, Traditional/methods , Plant Preparations/pharmacology , Adult , Aged , Aged, 80 and over , Ceremonial Behavior , Ethnobotany , Ethnopharmacology , Female , Humans , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Interviews as Topic , Male , Middle Aged , Poland
6.
J Sci Food Agric ; 102(3): 1105-1113, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34322881

ABSTRACT

BACKGROUND: Global warming and the indiscriminate use of pesticides have increased the propagation of the stored-product insect pests, leading to enormous losses in the agriculture and food industries. The most used insect repellents are synthetic derivatives; however, these have an adverse effect on human health as well as on the environment. Therefore, we attempted to find materials with insect repellent activity in natural products. The present study aimed to identify the single chemical component with intense insect repellent activity in extracts from four different Oriental medicinal plant materials: (i) Anethum graveolens L. (dill) seeds; (ii) Artemisia capillaris Thunb. (capillary wormwood) leaves; (iii) smoked Prunus mume Siebold & Zucc. (mume) fruits; and (iv) Rhus javanica L. (galls). RESULTS: As a result of the bioassay-guided fractionation of each extract against the Plodia interpunctella, stored-product insect, the n-hexane fraction of dill seeds extract was confirmed as the optimal fraction between all of the fractions. In total, 32 chemical components were identified from the n-hexane fraction of dill seeds by gas chromatography-mass spectrometry analysis, and the two main components were dillapiole (47.51%) and carvone (26.76%). Of the two components, dillapiole was confirmed as the key component playing an essential role in insect repellent activity. CONCLUSION: Our study suggests that dillapiole has the potential to be used as a natural insect repellent for the control of P. interpunctella infestation in agricultural and food products during distribution and storage. © 2021 Society of Chemical Industry.


Subject(s)
Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Lepidoptera/drug effects , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Anethum graveolens/chemistry , Animals , Artemisia/chemistry , Brucea javanica/chemistry , Gas Chromatography-Mass Spectrometry , Insect Repellents/chemistry , Lepidoptera/physiology , Plant Extracts/chemistry , Prunus/chemistry
7.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34786852

ABSTRACT

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Subject(s)
Antifungal Agents/chemistry , Aspergillus/chemistry , Insect Repellents/chemistry , Panax/chemistry , Animals , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Ascomycota/drug effects , Aspergillus/growth & development , Aspergillus/metabolism , Bombyx/drug effects , Bombyx/growth & development , Enediynes/chemistry , Enediynes/isolation & purification , Enediynes/pharmacology , Fatty Alcohols/chemistry , Fatty Alcohols/isolation & purification , Fatty Alcohols/pharmacology , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Microbial Sensitivity Tests , Molecular Conformation , Panax/growth & development , Panax/metabolism , Phoma/drug effects , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism
8.
PLoS One ; 16(12): e0260149, 2021.
Article in English | MEDLINE | ID: mdl-34860850

ABSTRACT

BACKGROUND: Several human-produced volatiles have been reported to mediate the host-seeking process under laboratory conditions, yet no effective lure or repellent has been developed for field application. Previously, we found a gradation of the attractiveness of foot odors of different malaria free individuals to Anopheles gambiae sensu stricto Giles. In this study, foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was collected, analyzed and attractive blend components identified. METHODS: The foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was trapped on Porapak Q and analyzed by gas chromatography-linked mass spectrometry (GC-MS). Specific constituents perceived by the insect olfactory system were then identified by GC-linked to electro-antennography detector (GC-EAD) and characterized by GC-MS. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi-field conditions in a screen-house using Counter Flow Geometry (CFG traps) baited with (i) the blend of all the EAD-active and (ii) other blends containing all components with exclusion of one component at a time. The number of mosquitoes trapped in the baited CFG traps were compared with those in the control traps. RESULTS: Eleven major and minor constituents: 2 carboxylic acids, six aldehydes, two ketones and one phenolic compound, were confirmed to be EAD-active. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi- field conditions. Exclusion/ subtraction of one of the following compounds: i-butyric acid, i-valeric acid, n-octanal, n-nonanal, n-decanal, n-dodecanal, undecanal or n-tridecanal, from each blend led to reduction in the attractiveness of all the resulting blends, suggesting that all of them are critical/important for the attractiveness of the foot odor to An. gambiae mosquitoes. However, exclusion/subtraction of 4-ethoxyacetophenone, 4-ethylacetophenone and/or 2-methylphenol, led to significant enhancements in the attractiveness of the resulting blends, suggesting that each of these compounds had repellent effect on An. gambiae ss. Undecanal exhibited kairomonal activity at low natural concentrations under semi-field conditions but repellent activity at high unnatural conditions in the laboratory. Furthermore, the comparison of the mean mosquito catches in traps baited with the nine-component blend without 4-ethoxyacetophenone, 4-ethylacetophenone and the complete foot odor collection revealed that the former is significantly more attractive and confirmed the repellent effect of the two carbonyl compounds at low natural concentration levels. CONCLUSION: These results suggest that differential attractiveness of An. gambiae to human feet is due to qualitative and/or qualitative differences in the chemical compositions of the foot odors from individual human beings and relative proportions of the two chemical signatures (attractants versus repellents) as observed from the ratios of the bioactive components in the foot odors of the most attractive and least attractive individuals. Chemical signature means the ensemble of the compounds released by the organism in a specific physiological state. The chemical signature is emitter-dependent, but does not depend on receiver response. Thus, there is only one chemical signature for one individual or species that may eventually include inactive, attractive and repellent components for another organism. The nine-component attractive blend has a potential as an effective field bait for trapping of malaria vectors in human dwellings.


Subject(s)
Acetophenones/chemistry , Anopheles/drug effects , Cresols/chemistry , Ethyl Ethers/chemistry , Insect Repellents/chemistry , Volatile Organic Compounds/chemistry , Acetophenones/isolation & purification , Animals , Anopheles/physiology , Cresols/isolation & purification , Ethyl Ethers/isolation & purification , Female , Foot/physiology , Gas Chromatography-Mass Spectrometry , Humans , Insect Repellents/isolation & purification , Mosquito Control/methods , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Odorants/analysis , Volatile Organic Compounds/isolation & purification
9.
PLoS One ; 16(11): e0260281, 2021.
Article in English | MEDLINE | ID: mdl-34843539

ABSTRACT

BACKGROUND: There is a growing need to use green alternative larvicidal control for Aedes larvae compared to chemical insecticides. Substantial reliance on chemical insecticides caused insecticide resistance in mosquito populations. Thus, research for alternate chemical compounds from natural products is necessary to control Aedes larvae. This study explores the analysis of chemical compositions from Areca catechu nut as a potential larvicide for Aedes (Diptera: Culicidae). METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus. RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents. CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.


Subject(s)
Aedes/drug effects , Areca/chemistry , Insecticides/toxicity , Nuts/chemistry , Plant Extracts/toxicity , Aedes/physiology , Animals , Insect Control , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Insect Repellents/toxicity , Insecticides/chemistry , Insecticides/isolation & purification , Larva/drug effects , Larva/physiology , Plant Extracts/chemistry , Plant Extracts/isolation & purification
10.
Chem Biodivers ; 18(11): e2100374, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34453492

ABSTRACT

Thymus quinquecostatus Celak. of the Lamiaceae family has a long history of dual use of medicine and food with high economic value, and has been proved to have good antioxidative, antimicrobial, and antidiabetic activities. Essential oil (EO) extracted from the aerial part of T. quinquecostatus was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC/MS) and GC. Totally 45 compounds were identified accounting for 98.5 % of the EO. The major constituents of the EO were linalool (52.003 %), borneol (10.911 %) and anethole (5.325 %). Fumigant, contact and repellent activity of T. quinquecostatus essential oil (EO) against Tribolium castaneum (Coleoptera: Tenebrionidae), Lasioderma Serricorne (Coleoptera: Anobiidae), Liposcelis bostrychophila (Psocoptera: Liposcelididae) were evaluated in this work. T. quinquecostatus EO and three major constituents showed varying degrees of insecticidal and repellent activities to three stored-product insects. Anethole stated the best fumigant and contact activity than others did to all three insect species. EO and compounds showed general repellent activity against three target insects. This work suggests that the EO of T. quinquecostatus has promising potential to be developed into botanical pesticides and repellents controlling pest damage in warehouses and grain stores.


Subject(s)
Insect Repellents/pharmacology , Insecta/drug effects , Insecticides/pharmacology , Oils, Volatile/pharmacology , Plant Components, Aerial/chemistry , Thymus Plant/chemistry , Animals , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Insecticides/chemistry , Insecticides/isolation & purification , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification
11.
Molecules ; 26(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063887

ABSTRACT

The present work describes the use of Centrifugal Partition Chromatography (CPC) for the bio-guided isolation of repellent active volatile compounds from essential oils. Five essential oils (EOs) obtained from three Pinus and two Juniperus species were initially analyzed by gas chromatography-mass spectrometry (GC/MS) and evaluated for their repellent properties against Aedes albopictus. The essential oil from needles of P. pinea (PPI) presented the higher activity, showing 82.4% repellency at a dose of 0.2 µL/cm2. The above EO, together with the EO from the fruits of J. oxycedrus subsp. deltoides (JOX), were further analyzed by CPC using the biphasic system n-Heptane/ACN/BuOH in ratio 1.6/1.6/0.2 (v/v/v). The analysis of PPI essential oil resulted in the recovery of (-)-limonene, guaiol and simple mixtures of (-)-limonene/ß-pheladrene, while the fractionation of JOX EO led to the recovery of ß-myrcene, germacrene-D, and mixtures of α-pinene/ß-pinene (ratio 70/30) and α-pinene/germacrene D (ratio 65/45). All isolated compounds and recovered mixtures were tested for their repellent activity. From them, (-)-limonene, guaiol, germacrene-D as well the mixtures of (-)-limonene/ß-pheladrene presented significant repellent activity (>97% repellency) against Ae. albopictus. The present methodology could be a valuable tool in the effort to develop potent mosquito repellents which are environmentally friendly.


Subject(s)
Aedes/drug effects , Chromatography/methods , Insect Repellents/isolation & purification , Animals , Biological Assay , Gas Chromatography-Mass Spectrometry , Humans , Insect Repellents/administration & dosage , Insect Repellents/pharmacology , Juniperus/chemistry , Oils, Volatile/chemistry , Pinus/chemistry , Volatilization
12.
Molecules ; 26(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557353

ABSTRACT

Haematobia irritans is an obligate bloodsucking ectoparasite of cattle and is the global major pest of livestock production. Currently, H. irritans management is largely dependent upon broad-spectrum pesticides, which lately has led to the development of insecticide resistance. Thus, alternative control methods are necessary. Endophyte-infected grasses have been studied as an alternative due to their capability to biosynthesize alkaloids associated with anti-insect activities. Thus, the main aim of this study was to evaluate the antifeedant and repellent activity of lolines obtained from endophyte-infected tall fescue against H. irritans adults in laboratory conditions. The alkaloid extract (ALKE) was obtained by acid-base extraction. N-formyl loline (NFL) and N-acetyl loline (NAL) were isolated by preparative thin layer chromatography (pTLC) and column chromatography (CC), and the loline was prepared by acid hydrolysis of a NFL/NAL mixture. Loline identification was performed by gas chromatography coupled to mass spectrometry (GC/MS). Feeding behavior was evaluated by a non-choice test, and olfactory response was evaluated using a Y-tube olfactometer. Accordingly, all samples showed antifeedant activities. NFL was the most antifeedant compound at 0.5 µg/µL and 1.0 µg/µL, and it was statistically equal to NAL but different to loline; however, NAL was not statistically different to loline. NFL and NAL at 0.25 µg/µL were more active than loline. All samples except loline exhibited spatial repellency in the olfactometer. Thus, the little or non-adverse effects for cattle and beneficial activities of those lolines make them suitable candidates for horn fly management.


Subject(s)
Alkaloids/pharmacology , Endophytes/physiology , Festuca/chemistry , Festuca/microbiology , Insect Repellents/pharmacology , Muscidae/drug effects , Alkaloids/chemistry , Alkaloids/isolation & purification , Animals , Insect Repellents/chemistry , Insect Repellents/isolation & purification
13.
J Chem Ecol ; 46(9): 881-890, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803512

ABSTRACT

The coffee berry borer (CBB) is one of the main coffee pests in the world including Colombia. This pest is difficult to manage because of its cryptic habits and the continuous availability of coffee fruits. Among the new management strategies being tested is the use of volatile compounds as insect repellents. In this work, the behavioral response of female adult CBBs to terpenes previously identified in the CBB-repellent plant species Lantana camara was evaluated. α-Terpinene, (R)-limonene, farnesene and ß-caryophyllene terpenes were tested via a Y-tube olfactometer in which ripe coffee fruits were accompanied by terpenes at concentrations between 25 and 200 ppm. Only ß-caryophyllene induced a significant and consistent CBB repellent effect at all tested doses. The protective effect of microencapsulated ß-caryophyllene was then determined under laboratory conditions by incorporating the terpene in a colloidosome-gel system at 2.8 × 105 ng/h in the middle of coffee fruits with adult CBBs. The coffee fruits in turn presented a decrease in fruit infestation. Furthermore, the protection of coffee fruits when ß-caryophyllene gels were hung in coffee trees was evaluated in the field; infestations were artificially induced by the use of raisins (CBB-infested old coffee fruits) placed on the ground. Compared with unprotected trees, the trees treated with caryophyllene gels exhibited a 33 to 45% lower degree of infestation. Taken together, the results show that ß-caryophyllene is a promising compound for an integrated pest management (IPM) program in commercial coffee plantations.


Subject(s)
Coffea/parasitology , Coleoptera/drug effects , Insect Repellents/pharmacology , Pest Control/methods , Terpenes/pharmacology , Volatile Organic Compounds/pharmacology , Animals , Behavior, Animal/drug effects , Female , Fruit/parasitology , Insect Repellents/isolation & purification , Lantana/chemistry , Seeds/parasitology , Terpenes/isolation & purification , Volatile Organic Compounds/isolation & purification
14.
Chem Biodivers ; 17(10): e2000487, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32749064

ABSTRACT

Dyssodia decipiens is one of the seven recognized species within the Dyssodia genus, which has economic and social relevance in Mexico. Herein, we report on the volatile characterization and pharmacological activity of D. decipiens. The essential oils (2017-2019) contained verbenone (30.8-60.9 %), limonene (5.6-35.5 %), ß-caryophyllene (7.8-19.8 %) and linalool (4.5-12.4 %) as major constituents along the studied years. Antifungal properties were probed on Candida albicans ATCC 90028, ATCC 10231 (fluconazole resistant) and five clinical isolates (IS1-IS5). Flower essential oils had the best anti-C. albicans activity (MIC 59.2-93.5 µg mL-1 ), and limonene (MIC 125.5-188.4 µg mL-1 ) and ß-caryophyllene (MIC 104.3-184.2 µg mL-1 ) were involved in this effect. SEM examination revealed that D. decipiens essential oils produced an evident lysis on the fungus. Mosquito repellent activity was demonstrated on Aedes aegypti, a vector of dengue, chikungunya and zika viruses. The repellent activity of leaf essential oils (20 %) was effective within 1-5 h post-treatment (>90 %) and it was stronger (p<0.01) than that of commercial DEET. The evaluation of the four major volatiles (10 % each) produced similar results to those of essential oils. Finally, leaf essential oils showed a moderate antiproliferative activity on the lines OVCAR-3 (LD50 56.5-85.7 µg mL-1 ), and verbenone (LD50 65.3 µg mL-1 ) and ß-caryophyllene (LD50 43.6 µg mL-1 ) were linked to this effect.


Subject(s)
Aedes/drug effects , Antifungal Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Asteraceae/chemistry , Candida albicans/drug effects , Insect Repellents/pharmacology , Oils, Volatile/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Flowers/chemistry , Humans , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Mexico , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification
15.
J Ethnopharmacol ; 262: 113124, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32730874

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dengue is one of the most important pervasive diseases in many regions of the world, including China. There is an urgent need for new repellents, including plant derivatives, due to the resistance, toxicity, and non-degradability of synthetic insecticides. Traditional plant-based remedies may provide potential avenues for developing new strategies. AIMS OF THE STUDY: The aims of this study were to 1) document the traditional mosquitoes repellent plants used by the Dai people of Xishuangbanna, China; 2) screen out new efficient mosquito repellent plants as candidates for further study. MATERIALS AND METHODS: During the period August 2016 to July 2017, five field surveys were conducted in 16 villages of Xishuangbanna. A total of 81 informants (44 males and 37 females) were interviewed using semi-structured questions to collect detailed information on the plants they use to prevent mosquito bites. Ten plants with higher popularity and larger resource were collected and extracts were prepared by hydro-distillation or with petroleum ether. Extracts were tested for adult Aedes albopictus repellency using a human-bait cage. Firstly, repellency was determined as the Minimum Effective Dosage (MED) per minute at which 1% of the mosquito bite through the treated cloth. Secondly, five plant extracts with lower MEDs were tested the repellent longevity of different concentrations. RESULTS: Eighteen plants were documented as being used in traditional remedies against mosquitoes. The methods for controlling mosquitoes were diverse: direct burning was used for most plants (16 species), followed by smearing (5 species), and placing (5 species). Laboratory analyses confirmed that ten plants did exhibit mosquito repellent activity. Of them, Artemisia indica, Nicotiana tabacum, Blumea balsamifera, Vitex trifolia, and Chromolaena odorata showed good mosquito repellency with MEDs of 0.015, 0.061, 0.090, 0.090, and 0.105 mg/cm2, respectively. The protection rate provided by A. indica is also the highest among five plants. Although it provides complete protection time of only 30 min at 0.45 mg/cm2 concentration, its repellency within 2 h is not significantly different from that of DEET. CONCLUSION: Dai villagers in Xishuangbanna have a rich, diverse and scientific knowledge of plant-based mosquito repellents. Laboratory experiments screened out several plants as candidates for mosquito repellents, of which Artemisia indica was the most promising candidate plant.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Ethnobotany/methods , Insect Bites and Stings/ethnology , Insect Bites and Stings/prevention & control , Insect Repellents/administration & dosage , Surveys and Questionnaires , Adult , Aged , Aged, 80 and over , Animals , China/ethnology , Culicidae , Drugs, Chinese Herbal/isolation & purification , Female , Humans , Insect Repellents/isolation & purification , Male , Middle Aged
16.
Aquat Toxicol ; 222: 105474, 2020 May.
Article in English | MEDLINE | ID: mdl-32259658

ABSTRACT

Larval toxicity of ethanolic extract of C. parvula (Ex-Cp) was prominent in the second and the third instars at the maximum lethal dosage of 100 ppm with 98 and 97 % mortality rate respectively. The LC50 and LC90 was displayed at 43 ppm and 88 ppm dosage respectively. Correspondingly, the sub-lethal dosage (65 ppm) of Ex-Cp significantly alters the carboxylesterase (α and ß), GST and CYP450 enzyme level in both III and IV instar larvae in dose-dependent manner. Similarly, the Ex-Cp displayed significant repellent activity (97 %) with a maximum level of protection time (210 min). Photomicrography assay of Ex-Cp (65 ppm) were toxic to dengue larvae as compared to control. The non-target toxicity of Ex-Cp against the beneficial mosquito predators displayed less toxicity at the maximum dosage of 600 ppm as compared to Temephos. Thus the present research delivers the target and non-target toxicity of red algae C. parvula against the dengue mosquito vector.


Subject(s)
Aedes/drug effects , Dengue , Insect Repellents/pharmacology , Mosquito Vectors/drug effects , Plant Extracts/pharmacology , Rhodophyta/chemistry , Aedes/virology , Animals , Aquatic Organisms/drug effects , Carboxylesterase/metabolism , Dengue/virology , Dose-Response Relationship, Drug , Insect Repellents/isolation & purification , Insect Repellents/toxicity , Larva/drug effects , Larva/enzymology , Lethal Dose 50 , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Water Pollutants, Chemical/toxicity
17.
J Ethnopharmacol ; 248: 112333, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31654797

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The use of Hazomalania voyronii, popularly known as hazomalana, to repel mosquitoes and resist against insect attacks is handed down from generation to generation in Madagascar. In the present study, we investigated the ability of the essential oils (EOs) obtained from the stem wood, fresh and dry bark of H. voyronii to keep important mosquito vectors (Aedes aegypti and Culex quinquefasciatus) away, as well as their toxicity on three insect species of agricultural and public health importance (Cx. quinquefasciatus, Musca domestica and Spodoptera littoralis). MATERIALS AND METHODS: Hydrodistillation was used to obtain EOs from stem wood, fresh and dry bark. The chemical compositions were achieved by gas chromatography-mass spectrometry (GC-MS). Toxicity assays using stem wood and bark EOs were performed on larvae of Cx. quinquefasciatus and S. littoralis, and adults of M. domestica by WHO and topical application methods, respectively. Mosquito repellent activity of the most effective EO, i.e. the bark one, was determined on human volunteers by arm-in-cage tests, and results were compared with that of the commercial repellent N,N-ddiethyl-m-toluamide (DEET). RESULTS: The H. voyronii EOs were characterized by oxygenated monoterpenes with perilla aldehyde (30.9-47.9%) and 1,8-cineole (19.7-33.2%) as the main constituents. The fresh and dry bark EOs were the most active on Cx. quinquefasciatus and S. littoralis larvae, respectively, with LC50/LD50 of 65.5  mg L-1, and 50.5  µg larva-1; the EOs from wood and fresh bark displayed the highest toxicity on M. domestica (LD50 values 60.8 and 65.8 µg adult-1, respectively). Repellence assay revealed an almost complete protection (>80%) from both mosquito species for 30 min when pure fresh bark EO was applied on the volunteers' arm, while DEET 10% repelled >80% of the mosquitoes up to 120 min from application. CONCLUSION: The traditional use of the bark EO to repel insects has been demonstrated although an extended-release formulation based on H. voyronii EOs is needed to increase the repellent effect over time. A wide spectrum of insecticidal activity has been provided as well, suggesting a possible use of H. voyronii EOs in the fabrication of green repellents and insecticides useful to control mosquito vectors and agricultural pests.


Subject(s)
Aedes/drug effects , Culex/drug effects , Hernandiaceae , Houseflies/drug effects , Insect Repellents/pharmacology , Mosquito Control , Oils, Volatile/pharmacology , Plant Bark , Plant Oils/pharmacology , Spodoptera/drug effects , Wood , Aedes/growth & development , Animals , Culex/embryology , DEET/pharmacology , Hernandiaceae/chemistry , Houseflies/growth & development , Humans , Insect Repellents/isolation & purification , Larva/drug effects , Larva/growth & development , Oils, Volatile/isolation & purification , Plant Bark/chemistry , Plant Oils/isolation & purification , Spodoptera/embryology , Time Factors , Wood/chemistry
18.
J Sci Food Agric ; 100(4): 1541-1546, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31769025

ABSTRACT

BACKGROUND: Citrus sinensis, Allium sativum, Ocimum basilicum, Mentha spicata, Curcuma longa, Carica papaya, Andrographis paniculata, Azadirachta indica, Cymbopogon citratus and Acorus calamus were compared in the form of extracts of chloroform, hexane and aqueous media for their effectiveness in repelling Tribolium castaneum. Filter paper of 9 cm in diameter was cut into halves. Using a micro-pipette, each extract was applied to one half of the filter paper. The volume applied was kept constant at 0.6 mL per 30 cm2 . The filter paper was dried and reattached leaving a 0.5 cm gap between, in a Petri-plate. Ten adults of T. castaneum were introduced and the repellency was observed after 30, 60 and 180 min. RESULTS: The aqueous extract of C. papaya exhibited the highest repellency (82-97%) followed by that of garlic bulbs (aqueous extract) with 86.67% repellency. Further, gunny bags were sprayed separately using bottle sprayers with the two most effective extracts at a constant volume of 42 mL per 575 cm2 . These treated gunny bags were compared with malathion-treated gunny bags in the insect management unit. The observations were taken after 2, 8 and 24 h. Papaya leaf extract-treated gunny bags showed relative repellent activity similar to that of malathion-treated gunny bags after 24 h of treatment. Thus, gas chromatography-mass spectrometry analysis of aqueous extract of papaya leaves was performed. CONCLUSIONS: It can be concluded that extract of papaya leaves containing 2-methoxy-4-vinylphenol (8.47% peak area) can be used as a repellent biopesticide. © 2019 Society of Chemical Industry.


Subject(s)
Insect Repellents/pharmacology , Plant Extracts/pharmacology , Tribolium/drug effects , Andrographis/chemistry , Animals , Azadirachta/chemistry , Carica/chemistry , Curcuma/chemistry , Cymbopogon/chemistry , Garlic/chemistry , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Mentha spicata/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Tribolium/physiology
19.
Ecotoxicol Environ Saf ; 189: 109988, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31767459

ABSTRACT

Tribolium casteneum is a major stored grains pest causing huge loss by secreting toxic quinones' which make the grains unfit for human consumption. Increasing concern about the fast-growing resistance in T. casteneum against fumigants has evoked more intense research worldwide. Therefore, finding an eco-friendly alternative for the management of the pest is of great importance. In this study, the insecticidal activity of the essential oils (EOs) of Artemisia annua is evaluated. Chemical composition of the EOs eluted with methanol and petroleum ether was analysed through Gas chromatography-mass spectrometry (GC-MS). The result has reported a total of 13 & 16 compounds in the methanol and petroleum ether EOs respectively. In contact toxicity studies, adults were found more susceptible to the petroleum ether EOs (LD50 = 0.43 mg adult-1) than the methanolic EOs (LD50 = 1.87 mg adult-1). Petroleum ether EOs was also superior in fumigant assays against both the adults (0.81 mg L air-1) and larvae (0.65 mg L air-1). Moreover, the same was also recorded as a strong repellent. The bio-molecular studies conducted to gain an insight into the extent of metabolic disturbances inflicted in the treatment sets has shown a significant increase in Lipid peroxidase and decrease (p˂0.01) in protein, Acetylcholinesterase, Glutathione S Transferees, Reduced Glutathione level. This indicates the major signs of oxidative stress in the treatment sets. The Results ascertain the knowledge to develop natural insecticides from Artemisia annua using a potential solvent to be used in the future as an efficient management tool against T. casteneum.


Subject(s)
Artemisia annua/chemistry , Insect Control/methods , Insecticides/pharmacology , Oils, Volatile/pharmacology , Tribolium/physiology , Animals , Insect Repellents/chemistry , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Larva/metabolism , Larva/physiology , Lethal Dose 50 , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oxidative Stress/drug effects , Tribolium/metabolism
20.
Sci Rep ; 9(1): 1524, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728370

ABSTRACT

There is an increased need for improved and affordable insect repellents to reduce transmission of rapidly spreading diseases with high mortality rates. Natural products are often used when DEET cannot be afforded or accessed and when consumers choose not to use a synthetic repellent. The essential oils from two newly bred Nepeta cataria (catnip) plants representing two different chemotypes and their respective isolated nepetalactone isomers were evaluated as mosquito repellents against Aedes aegypti mosquitoes that transmit the Zika and Dengue virus in a one choice landing rate inhibition assay. A dose response curve was generated for each treatment and a time course analysis of repellency was performed over 24 hours with a N. cataria essential oil sample. The results indicate that all essential oil samples and their respective purified nepetalactone isomers were able to achieve greater than 95% repellency. Between two and four hours, the ability to repel more than 95% of the mosquitoes diminished. At the lowest concentrations tested, the nepetalactones and crude essential oil samples were more effective than DEET at reducing the number of mosquito landings.


Subject(s)
Aedes/physiology , Cyclopentane Monoterpenes/pharmacology , Insect Repellents/pharmacology , Nepeta/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Pyrones/pharmacology , Aedes/drug effects , Animals , Cyclopentane Monoterpenes/isolation & purification , Female , Insect Repellents/isolation & purification , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Pyrones/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...